Community-Guided Learning: Exploiting Mobile Sensor Users to Model Human Behavior
نویسندگان
چکیده
Modeling human behavior requires vast quantities of accurately labeled training data, but for ubiquitous people-aware applications such data is rarely attainable. Even researchers make mistakes when labeling data, and consistent, reliable labels from low-commitment users are rare. In particular, users may give identical labels to activities with characteristically different signatures (e.g., labeling eating at home or at a restaurant as “dinner”) or may give different labels to the same context (e.g., “work” vs. “office”). In this scenario, labels are unreliable but nonetheless contain valuable information for classification. To facilitate learning in such unconstrained labeling scenarios, we propose Community-Guided Learning (CGL), a framework that allows existing classifiers to learn robustly from unreliably-labeled user-submitted data. CGL exploits the underlying structure in the data and the unconstrained labels to intelligently group crowd-sourced data. We demonstrate how to use similarity measures to determine when and how to split and merge contributions from different labeled categories and present experimental results that demonstrate the effectiveness of our framework.
منابع مشابه
Community-guided Mobile Phone Sensing Systems
Smartphones with embedded sensors have become commonplace items carried by millions of people. Mobile phone sensing is now on the cusp of going mainstream. Two critical ingredients, the access to large-scale sensor data and robust mobile classification, underpin the majority of the emerging mobile sensing applications. Early research prototypes and small-scale deployments suggest these applicat...
متن کاملA Little Bit of Labeled Data Can Get You Started Helping Mobile Apps Bootstrap with Fewer Users
A growing number of mobile apps are exploiting smartphone sensors to infer user behavior, activity, or context. Inference requires training using labeled ground truth data. Obtaining labeled data for new apps is a “chicken-egg” problem. Without a reasonable amount of labeled data, apps cannot provide any service. But until an app provides useful service it is not worth installing and has no opp...
متن کاملInvestigating the Effective Factors on Mobile Learning in Medical Education Based on FRAME Model
Introduction: With regard to an increase in use of modern communication technologies including mobile facilities and their application in learning and training, taking quality and users’ needs into account is a fundamental matter. In this article, an attempt has been made to investigate the factors influencing mobile learning from the perspective of M.S. and Ph.D. medical sciences students stud...
متن کاملDynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملWhere and what: Using smartphones to predict next locations and applications in daily life
This paper investigates the prediction of two aspects of human behavior using smartphones as sensing devices. We present a framework for predicting where users will go and which app they will use in the next ten minutes by exploiting the rich contextual information from smartphone sensors. Our first goal is to understand which smartphone sensor data types are important for the two prediction ta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010